+ + + + + -

OOOESQLABS + + we empower health care

+ + + + + +

Towards an OSP IVIVE

toolbox Susana Proença

OSP community conference 2024

Why in vitro?

OOO ESQLABS WE EMPOWER HEALTH CARE

-

What can in vitro models be used for?

Absorption Distribution

Metabolism

Elimination

- Caco-2 assays
- PAMPA assays ٠
- Rapid dialysis assays ٠
- SP(M)E•
- Membrane transporter ٠ studies
- Hepatocytes clearance ٠
- Biliary excretion ٠
- Placental transfer (e.g. ٠ BeWo cells)

... but also for characterizing the dynamics/effect of the chemical

In vitro-in vivo extrapolation

Results from in vitro assays cannot be used directly for in vivo predictions!

Clearance measured *in vitro* is not the same as in vivo:

- Differences in serum concentration
- Differences in cell-microsomes number/surface area
- Difference expression/activity or certain transporters or enzymes
- Possibility do bind to plastic or evaporate

Clearance (in vivo) Binding to blood

In vitro-in vivo extrapolation

Dependently on the *in vitro* assay used and its characteristics, in vitro clearance can be quite different...

Towards harmonization of test methods for in vitro hepatic clearance studies

Jochem Louisse^{a,*}, Martin Alewijn^a, Ad A.C.M. Peijnenburg^a, Nicole H.P. Cnubben^b, Minne B. Heringa^b, Sandra Coecke^c, Ans Punt^a

^a Wagentingen Food Safety Research (WFSR), part of Wagentingen Untversity and Research, Wagentingen, the Netherlands ^b National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands ^c European Commission Joint Research Centre (JRC), Ispra, Italy

Standard IVIVE framework

IVIVE for Hepatic Clearance

This is different in PK-Sim

OOOESQ

Standard IVIVE framework

+ + + + + +

To parameterize hepatic clearance PK-Sim assumes that you have the half-life : tHalf (min)=Ln2/K_{elim}(min-1) Or that you have the Specific clearance in min-1*

*despite being in the same units Kelim and Specific clearance are not the same

	Parameters used in simulations					
0	Specific clearance	0 1/min				

Description

Intrinsic clearance normalized to the volume where the process occurs

Formula

0.693 / tHalf * N_Liver / N_cells / fu_mic / f_cell

References

f_cell is defined as: ..|Fraction intracellular (liver)
fu_mic is defined as: ..|Fraction unbound (assay)
N_Liver is defined as: ..|Number of cells/g liver tissue
N_cells is defined as: ..|Number of cells/incubation
tHalf is defined as: ..|t1/2 (hepatocyte assay)

But often the value we get from the laboratory or literature is neither half-life neither specific clearance. Frequently it is uL/min/million hepatocytes. How do we use this value? Besides what is the fraction unbound in the in vitro assay?

IVIVE in PK-Sim Questions on the OSP Forum

IVIVE in other softwares

Convert CLint	Convert Km and Vma <u>x</u>		Convert T <u>1</u>	/2	Ύτι	ransporters	
In vitro assay type: Microsomes Hepatocytes CrCYP Cytosolic Protein	In vitro fraction unbound: C Fu plasma C Fu calc (Austin) C Fu calc (Hallifax) C User defined 100 % C In vitro value is unbound	in vitro Vmax in vitro Km In vivo Vmax	850	pmol/mi umol/L mg/s	n/mg.protein	• •	
Hide Advanced Option	Km and Vmax values exp to table!	In vivo Km,u orted For ro to 7,2	1,2054 ws with PB 6E-4 mg/s. Iransfe	mg/L PK location /mg-enzyme r 3A4 Km ar	NONE , Vmax will be c upon export. nd Vmax into En	onverted zyme table	
Body Weight 70	Tissue Weight 1500	A4 💌	pmol/mg	microsomal	protein 111	Mwt 572	299
mg MP/g Tiss 38	drug Mwt 325,78 Prot Conc [mg/ml] 0,5 efaults	Tissue	nt	Ŧ	Physiology		•
<u>R</u> estore GastroPlus Setti	ings						
						Class	

qivive.tools.wur.nl

Hepatocytes •
CLint Km and Vmax
Intrinsic clearance (CLint) (μ l/min/10^6 cells)
1
Scaling factor (x 10^6 cells/g liver)
117.5
FU incubation
• A 2 Method
Kilford et al (for hepatocyes)
x 10^6 hepatocytes/ml
x 10^6 hepatocytes/ml
x 10^6 hepatocytes/ml 1 Fu incubation:
x 10^6 hepatocytes/ml 1 Fu incubation: 0.28
x 10^6 hepatocytes/ml
x 10^6 hepatocytes/ml 1 Fu incubation: 0.28 Free concentration liver Method
x 10^6 hepatocytes/ml 1 Fu incubation: 0.28 Free concentration liver • ▲ ▲ Method Free concentration liver limited to Fup
x 10^6 hepatocytes/ml 1 Fu incubation: 0.28 Free concentration liver • ▲ ▲ Method Free concentration liver limited to Fup Fu liver:

The Simcyp[™] In Vitro Data Analysis (SIVA) Toolkit

OOOESQLABS

- Metabolic Intrinsic Clearance
- Mechanistic Permeability and Transporter Substrate/Inhibitor
- Mechanistic Enzyme Inhibition
- Dissolution and Precipitation
- Drug Solubility
- Virtual In Vitro Distribution
- Surface pH (Dissolution Models). .

+ + + + + + +

+ +

+ + + + +

+

+ +

Motivation			
We need a toolbox that	Strategy		
seamlessly integrates different types of <i>in vitro</i>	-In a tiered approach collect up to date knowledge on IVIVE of different ADME	Progress	
tools.	processes and write the extrapolation module in R.	Integrate the simple IVIVE for	
	-Report the R modules in Quarto with the appropriate references and assumptions.	clearance in R .	
	-Transform code in shiny app for general use.		
		+ + +	+ + + +

Progress: Characterizing unspecific binding

Plots of intrinsic clearance data using different concentration of rat microsomes

Austin et al, (2002) drug metabolism and disposition

- The clearance derived in vitro, even after normalizing per number of cells or mg microsomal protein is still not completely agnostic to these factors.
- We need the clearance of the UNBOUND fraction.
- > If it is not measured then we need to predict.

Progress: Characterizing unspecific binding

There are a few QSARs to calculate the fraction unbound in hepatocytes and microsomal experiments. Composition-based QSARs can be used for other cell system if content is known. Ideally we have the same assumptions for binding in the in vitro assay that for the tissue partitioning!

Table 2. Prediction Methods Tested in This Study as Reported from the Literature

Models	Model Equations
Composition-based model ⁷	General equations:
	${ m fu}_{ m inc}=rac{1}{P_{ m csa}}$
	$P_{\rm csa} = \frac{(1+I_{\rm m})F_{\rm wm} + P_{\rm nln} \cdot F_{\rm nlm} + I_{\rm m} \cdot P_{\rm npln} \cdot F_{\rm nplm} + (1+I_{\rm m}) \cdot P_{\rm pra} \cdot F_{\rm prm}}{(1+I_{\rm m})}$
	Predominantly neutral compounds and ionized acids: $P_{csa} = F_{wm} + \frac{P_{cba}F_{pm}}{1+I_m}$
	$Log P_{ m nla} = Log P_{ m ow}$ $I_{ m m} = 0 ext{ or } I_{ m m} = 10^{ m pH-pKa}$
	$\begin{array}{l} \textbf{Predominantly ionized bases (at least one pK_a \geq 7.0):} \\ P_{csa} = F_{wm} + \frac{P_{nla}F_{alm} + M - P_{apla}F_{aplm}}{1 + I_m} \end{array}$
	$P_{\mathrm{apla}} = \left[P_{\mathrm{ea}} - rac{(1+I_{\mathrm{e}})F_{\mathrm{we}} + P_{\mathrm{ow}}F_{\mathrm{nle}}}{1+I_{\mathrm{p}}} ight] \cdot rac{1+I_{\mathrm{p}}}{I_{\mathrm{e}}F_{\mathrm{aple}}}$
	$I_{ m m}, I_{ m e}, I_{ m p} = 10^{ m pKa-pH}$
Regression equation ⁸	Predominantly neutral compounds and ionized acids:
	$\mathrm{fu_{inc}} = \left[rac{1}{1+C_\mathrm{h} imes 10^{0.40 \mathrm{slog} P_\mathrm{ow} - 1.38}} ight]$
	Predominantly ionized bases (at least one $pK_a \ge 7.0$):
	$fu_{inc} = \left \frac{1}{1 + C_{b} \times 10^{0.40 + \log D_{ow} - 1.38}} \right $

- A QSAR based on Poulin assumptions was already available
- New "QSARs" based on PK-Sim, Rodgers and Rowland and Schmitt assumptions
- Also added plastic partition and flags for volatility

+ + + + + + + +

Progress: Characterizing unspecific binding

Function 1-Calculate composition

<pre>> getInVitroCompartment(typeSystem="microsomes",FBS=0,microplateType=24,volMedium=0.5,cMicro=1) \$cCellNL [1] 0.0002611111</pre>
\$cCe]]NPL [1] 0.0007261556
¢ccallapi

\$CCETTAPL [1] 0.0001594

Function 2-Calculate Fu based on QSAR, chemical properties and composition

> FractionUnbound(partitionQSPR="All PK-Sim Standard",logLipo=3,ionization=c("acid",0,0), typeSystem="hep atocytes",FBS=0,microplateType=96, volMedium=0.22,pKa=c(6,0,0),hlcAt=1E-6,cCells=2) [1] 0.7058107 > FractionUnbound(partitionQSPR="All PK-Sim Standard",logLipo=3,ionization=c("acid",0,0), typeSystem="hep atocytes",FBS=0.1,microplateType=96, volMedium=0.22,pKa=c(6,0,0),hlcAt=1E-6,cCells=2) [1] 0.5907571

Also important to validate ! Not just against experimental Fu but also against in vivo measured clearance!

Progress: type of clearance and units

Clspe (/min)= Cl (ml/min/cell) x N_liver(cell/g liver)/ fu_mic/ f_cells

*If units of cells is (/million cells) and not per cell, just divide CI per million

Units value of Clearance	Multiplying to get CI (ml/min/nr_cells)				
When in vitro clearance was not normalized by cell concentration :					
/min) 1/N_cells(n cell invitro/mL)					
(/s)	60 (s/min) / N_cells (n cell invitro/mL)				
(/h) 1/N_cells(n cell invitro/mL) / 60 (min/h)					
When it is normalized per volume but not per cell number					
(mL/min) 1/numbercells (n cell invitro)					
(mL/s)	1/ numbercells (n cell invitro) x 60 (s/min)				
(mL/h) 1/ numbercells (n cell invitro) / 60 (min/h)					
When it is normalized by cell number but not volume :					
(/min/n cell invitro)	VolMedium (mL)				
(/s/n cell invitro)	VolMedium (mL) x 60 (s/min)				
(/h/n cell invitro)	VolMedium (mL) / 60 (min/h)				
Right normalization	on but other units:				
(mL/s/n cell invitro)	60 (s/min)				
(mL/h/n cell invitro)	/60 (min/h)				
(uL/min/n cell invitro)	/1000 (uL/mL)				
uL/s/n cell invitro)	60 (s/min) / 1000 (uL/mL)				
(uL/h/n cell invitro)	/ 60 (min/h) / 1000 (uL/mL)				
(L/min/n cell invitro)	1000 (mL/L)				
(L/s/n cell invitro)	60 (s/min) x 1000 (mL/L)				
(L/h/n cell invitro)	1000 (mL/L) / 60 (min/h) + + + + + + +				

Progress: IVIVE of clearance

Can extrapolate different types of clearance!

The actual parent depletion curve:

	/E(typeValue="de	ecay experim	entaicur\	/e ,ex	ρυαιο	-CAP	vala			
	partitionQSPF	k="Áll Schmi	tt",							
	logLipo=5,	("acid" 0 0)								
	typeSystem="h	epatocytes"								
	FBS=0.0,pKa=0	(3,0,0),								
	hlcAt=1E-6,									
	microplateTyp	be=96,								
	Ccells-0 02)	· ,								
85.92071 (5.3	31e+00): par = ((0.01)								
6.355533 (1.3	L6e+00): par = ((0.01642129)								
2.767429 (5.7	79e-02): par = ((0.01858765)								
2.758336 (8.2	26e-04): par = ((0.01871273)								
2.758334 (1.	71e-07): par = ((0.01871094)								
Waiting for prot	filing to be dor	ie								
[1] 283.6378										
>										
Files Plots Package	s Help Viewer F	resentation							_	
-	🖼 Evport 🖌 🔕 🖌 🚿	-						💁 Pub	lish +	С
fit ourse										_
ni curve										
16 -										
•										
A 12-										
5										
atio										
5 0-	•									
C										
LCen			•							
Concent			•							
OUCO 4 -			•							
Concert			•							
U O O O C			•							
4- 0	25	50	•	75			100		3	12
4- 0	25	50 Tim	e_min	75			100		:	12
4- 0	25	50 Tim	e_min	75			100			12
4- 0	25	50 Tim	• e_min + +	75	+	+	100 +	+	+	12
4- 0	25	50 Tim	e_min + +	, 75 +	+	+	100 +	+	+	12

Can extrapolate different types of clearance!

From different types of calculated clearance:

Immediate next steps:

OSP IVIVE toolbox

Progress: IVIVE of clearance

- Finish plugging Michaelis–menten kinetics (Does Km need to be correct for Fu or not?)
- Validate IVIVE of the metabolism with a dataset of chemicals
- Evaluate intersystem extrapolation factors (ISEFs) for main enzymes

	units="mL/minutes/Millioncells",
	partitionQSPR="All Poulin and Theil",
	logLipo=2,
	ionization=c("neutral",0,0),
	typeSystem="hepatocytes",
	FBS=0,pKa=c(0,0,0),
	h1cAt=0.02,
	microplateType=96,
	volMedium=0.2,
	cCells=0.02)
[1] 62.26361	
> clearance_IVIVE	(typeValue="in vitro clearance parameter",expData=0.3
	units="mL/seconds/mg protein".
	partitionQSPR="All Poulin and Theil",
	partitionQSPR="All Poulin and Theil", logLipo=2,
	partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0),
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes",</pre>
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0),</pre>
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0), hlcAt=0.02,</pre>
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0), hlcAt=0.02, microplateType=96,</pre>
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0), hlcAt=0.02, microplateType=96, volMedium=0.2,</pre>
	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0), hlcAt=0.02, microplateType=96, volMedium=0.2, cMicro=0.2)</pre>
+ + + + + + + + + + [1] 1085.03	<pre>partitionQSPR="All Poulin and Theil", logLipo=2, ionization=c("neutral",0,0), typeSystem="microsomes", FBS=0,pKa=c(0,0,0), hlcAt=0.02, microplateType=96, volMedium=0.2, cMicro=0.2)</pre>

+ + + + + + +

OSP IVIVE toolbox Simple (partition) IVIVE vs compartmental (kinetic) IVIVE

The current extrapolation protocol is assuming instant equilibrium.

But in some cases, this assumption gets further from reality with extensive impacts on the predictions *e.g.* slow desorption from proteins, slow

diffusion through the unstirred water layer, etc

Simple (partition) IVIVE vs compartmental (kinetic) IVIVE

- For a few chemicals the Km values for P-gp seem to be different in different in vitro systems.
- This is at least partly because the efflux permeability was being calculated based on the total flux across the cell.
- In fact, the Km should be relative to the intracellular concentration.
- This can either be measured in tedious experiments of modelled with a compartmental model.

Pharmaceutical Research, Vol. 27, No. 3, March 2010 (© 2010) DOI: 10.1007/s11095-009-0026-9

Research Paper

Model Analysis of the Concentration-Dependent Permeability of P-gp Substrates

Tatsuhiko Tachibana,^{1,5} Satoshi Kitamura,² Motohiro Kato,¹ Tetsuya Mitsui,¹ Yoshiyuki Shirasaka,³ Shinji Yamashita,⁴ and Yuichi Sugiyama²

Fig. 1. Schematic diagram illustrating the PS products for the penetration of P-gp substrates across the cell monolayer. A, a previous model for apical-to-basolateral permeability considering only apical (donor) concentration; B, a new model for apical-to-basolateral permeability considering intracellular unbound concentration as the determiner of Km; C, a new model for basolateral-to-apical permeability.

Oral absorption

Currently there is a internal QSAR that based on lipophilicity and Mweff calculates Pint.

 $P_{\rm int}({\rm MW}_{\rm eff},{\rm MA}) = 265.796 \times {\rm MW}_{\rm eff}^{-4.49968} \times {\rm MA}({\rm cm/s})$ (5)

And how to include Papp from Caco-2, PAMPA from in vitro or from other models?

Using QSARs and other methods outside their applicability domain can lead to large mispredictions!

OSP IVIVE toolbox

Applicability domain

Reporting and Training

Having a toolbox that performs the extrapolation of in vitro values will improve the usability of the OSP tools !

For a matter of transparency and allowing interactive improvements, reporting of the methods will be done in Quarto

date: "5/22/2021"	Norah Jones May 22nd, 2021
ntml: fig-width: 8 fig-height: 4 code-fold: true	Air Quality <u>Figure 1</u> further explores the impact of temperature on ozone leve
<pre>## Air Quality @fig-airquality further explores the impact of temperature on ozone level.</pre>	▶ Code
<pre># label: fig-airquality # fig-cap: "Temperature and ozone level." # warning: false</pre>	a a a a a a a a a a a a a a a a a a a
<pre>Law any (September 2) + geom point() + geom smooth(method = "loess")</pre>	

Reporting and Training

Having a toolbox that performs the extrapolation of in vitro values will improve the usability of the OSP tools !

For a matter of transparency and allowing interactive improvements, reporting of the methods will be done in Quarto

In summary

Other processes to be added for the future:

- Lung inhalation
- Skin absorption
- BBB permeability
- …any suggestions

